Singular behavior of slow dynamics of single excitable cells.

نویسندگان

  • Takahiro Harada
  • Tomomi Yokogawa
  • Tomoshige Miyaguchi
  • Hiroshi Kori
چکیده

In various kinds of cultured cells, it has been reported that the membrane potential exhibits fluctuations with long-term correlations, although the underlying mechanism remains to be elucidated. A cardiac muscle cell culture serves as an excellent experimental system to investigate this phenomenon because timings of excitations can be determined over an extended time period in a noninvasive manner through visualization of contractions, although the properties of beat-timing fluctuations of cardiac muscle cells at the single-cell level remains to be fully clarified. In this article, we report on our investigation of spontaneous contractions of cultured rat cardiac muscle cells at the single-cell level. It was found that single cells exhibit several typical temporal patterns of contractions and spontaneous transitions among them. Detrended fluctuation analysis on the time series of interbeat intervals revealed the presence of 1/f(beta) noise at sufficiently large timescales. Furthermore, multifractality was also found in the time series of interbeat intervals. These experimental trends were successfully explained using a simple mathematical model, incorporating correlated noise into ionic currents. From these findings, it was established that singular fluctuations accompanying 1/f(beta) noise and multifractality are intrinsic properties of single cardiac muscle cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse Dynamics in Coupled Excitable Fibers: Soliton-like Collision, Recombination, and Overtaking

We study the dynamics of a reaction-diffusion system composed of two mutually coupled excitable fibers. We focus on the situation in which dynamical properties of the two fibers are not identical because of the parameter difference between the fibers. Using the spatially one-dimensional FitzHugh-Nagumo equations as a model of a single excitable fiber, we show that the system exhibits a rich var...

متن کامل

Timing regulation in a network reduced from voltage-gated equations to a one-dimensional map.

We discuss a method by which the dynamics of a network of neurons, coupled by mutual inhibition, can be reduced to a one-dimensional map. This network consists of a pair of neurons, one of which is an endogenous burster, and the other excitable but not bursting in the absence of phasic input. The latter cell has more than one slow process. The reduction uses the standard separation of slow/fast...

متن کامل

The relationship between two fast/slow analysis techniques for bursting oscillations.

Bursting oscillations in excitable systems reflect multi-timescale dynamics. These oscillations have often been studied in mathematical models by splitting the equations into fast and slow subsystems. Typically, one treats the slow variables as parameters of the fast subsystem and studies the bifurcation structure of this subsystem. This has key features such as a z-curve (stationary branch) an...

متن کامل

Function Approximation Approach for Robust Adaptive Control of Flexible joint Robots

This paper is concerned with the problem of designing a robust adaptive controller for flexible joint robots (FJR). Under the assumption of weak joint elasticity, FJR is firstly modeled and converted into singular perturbation form. The control law consists of a FAT-based adaptive control strategy and a simple correction term. The first term of the controller is used to stability of the slow dy...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 2009